

1

The Citizen Lab

Research Brief
Number 11 – August 2012

 The SmartPhone Who Loved Me:

 FinFisher Goes Mobile?

by Morgan Marquis-Boire, Bill Marczak and Claudio Guarnieri

This post describes our work analyzing several samples which appear to be mobile

variants of the FinFisher Toolkit, and ongoing scanning we are performing that

has identified more apparent FinFisher command and control servers.

INTRODUCTION

Earlier this year, Bahraini Human Rights activists were targeted by an email campaign that delivered a
sophisticated Trojan. In From Bahrain with Love: FinFisher’s Spy Kit Exposed? we characterized the
malware, and suggested that it appeared to be FinSpy, part of the FinFisher commercial surveillance toolkit.
Vernon Silver concurrently reported our findings in Bloomberg, providing background on the attack and the
analysis, and highlighting links to FinFisher’s parent company, Gamma International.

After these initial reports, Rapid7, a Boston-based security company, produced a follow-up analysis that
identified apparent FinFisher Command and Control (C&C) servers on five continents. After the release of the
Rapid7 report, Gamma International representatives spoke with Bloomberg and The New York Times’ Bits
Blog, and denied that the servers found in 10 countries were instances of their products.

Following these analyses, we were contacted by both the security and activist communities with potentially
interesting samples. From these, we identified several apparent mobile Trojans for the iOS, Android,
BlackBerry, Windows Mobile and Symbian platforms. Based on our analysis, we found these tools to be
consistent in functionality with claims made in the documentation for the FinSpy Mobile product, a
component of the FinFisher toolkit. Several samples appear to be either demo versions or “unpackaged”
versions ready to be customized, while others appear to be samples in active use.

https://citizenlab.org/2012/07/from-bahrain-with-love-finfishers-spy-kit-exposed/
http://www.bloomberg.com/news/2012-07-25/cyber-attacks-on-activists-traced-to-finfisher-spyware-of-gamma.html
https://community.rapid7.com/community/infosec/blog/2012/08/08/finfisher
http://www.bloomberg.com/news/2012-08-08/finfisher-spyware-reach-found-on-five-continents-report.html
http://www.bloomberg.com/news/2012-07-27/gamma-says-no-spyware-sold-to-bahrain-may-be-stolen-copy.html
http://bits.blogs.nytimes.com/2012/08/16/company-denies-role-in-recently-uncovered-spyware/
http://bits.blogs.nytimes.com/2012/08/16/company-denies-role-in-recently-uncovered-spyware/
https://www.youtube.com/watch?v=n5ZJUXweayo

Number 11 – August 2012

 2

Promotional literature describes this product as providing:

• Recording of common communications like Voice Calls, SMS/MMS and Emails

• Live Surveillance through silent calls

• File Download (Contacts, Calendar, Pictures, Files)

• Country Tracing of Target (GPS and Cell ID)

• Full Recording of all BlackBerry Messenger communications

• Covert Communications with Headquarters

In addition to analysis of these samples, we are conducting an ongoing scan for FinFisher C&C servers, and
have identified potential servers in the following countries: Bahrain, Brunei, the Czech Republic, Ethiopia,
Indonesia, Mongolia, Singapore, the Netherlands, Turkmenistan, and the United Arab Emirates (UAE).

MOBILE TROJANS

iOS

It was developed for Arm7, built against iOS SDK 5.1 on OSX 10.7.3 and it appears that it will run on iPhone
4, 4S, iPad 1, 2, 3, and iPod touch 3, 4 on iOS 4.0 and up.

The bundle is called “install_manager.app” and the contents of it are:

99621a7301bfd00d98c222a89900aeef ./data
1f73ebf8be52aa14d4d4546fb3242728 ./_CodeSignature/CodeResources
9273880e5baa5ac810f312f8bd29bd3f ./embedded.mobileprovision
2cbe06c89dc5a43ea0e0600ed496803e ./install_manager
23b7d7d024abb0f558420e098800bf27 ./PkgInfo
11e4821d845f369b610c31592f4316d9 ./Info.plist
ce7f5b3d4bfc7b4b0da6a06dccc515f2 ./en.lproj/InfoPlist.strings
3fa32da3b25862ba16af040be3451922 ./ResourceRules.plist

Investigation of the Mach-0 binary ‘install_manager’ reveals the text “FinSpy”:

https://en.wikipedia.org/wiki/ARM7

Number 11 – August 2012

 3

Further references to “FinSpy” were identified in the binary:

/Users/adm/Code/development/FinSpyV2/src/iOS/CoreTarget/
/Users/adm/Code/development/FinSpyV2/src/iOS/Installer/install_manager/install_manager/main.m
/Users/adm/Code/development/FinSpyV2/src/iOS/Installer/install_manager/install_manager/zip/ioapi.c
/Users/adm/Code/development/FinSpyV2/src/iOS/Installer/install_manager/install_manager/zip/unzip.c
/Users/adm/Code/development/FinSpyV2/src/iOS/Installer/install_manager/install_manager/zip/crypt.h
/Users/adm/Code/development/FinSpyV2/src/iOS/Installer/install_manager/install_manager/zip/zip.c
/Users/adm/Code/development/FinSpyV2/src/iOS/Installer/install_manager/install_manager/zip/
ZipArchive.mm
/Users/adm/Code/development/FinSpyV2/src/iOS/Installer/install_manager/install_manager/../../../CoreTarget/
CoreTarget/GIFileOps.mm
/Users/adm/Code/development/FinSpyV2/src/iOS/Installer/install_manager/install_manager/../../../CoreTarget/
CoreTarget/GIFileOps+Zip.m
/Users/adm/Code/development/FinSpyV2/src/iOS/Installer/install_manager/install_manager/../../../CoreTarget/
CoreTarget/GIPath.mm

Additionally, it appears that a developer’s certificate belonging to Martin Muench, who is described in The
New York Times as Managing Director of Gamma International GmbH and head of the FinFisher product
portfolio, is used:

http://bits.blogs.nytimes.com/2012/08/13/elusive-finspy-spyware-pops-up-in-10-countries/
http://bits.blogs.nytimes.com/2012/08/13/elusive-finspy-spyware-pops-up-in-10-countries/

Number 11 – August 2012

 4

An ad-hoc distribution profile is present: “testapp”:

UUID: “E0A4FAD7-E414-4F39-9DB3-5A845D5124BC”.
Will expire on 02.04.2013.
The profile matches the bundle ID (home.install-manager).
The profile was signed by 3 certificates.
The profile may be used by one developer:
Developer Certificate “iPhone Distribution: Martin Muench”.
This certificate was used to sign the bundle.

The code signature contains 3 certificates:

Certificate “Apple Root CA”:
Will expire on 09.02.2035.
Your keychain contains this root certificate.
Certificate “Apple Worldwide Developer Relations Certification Authority”:
Will expire on 14.02.2016.
Certificate “iPhone Distribution: Martin Muench”:
Will expire on 03.04.2013.
SHA1 fingerprint: “1F921F276754ED8441D99FB0222A096A0B6E5C65”.

The Application has been provisioned to run on the following devices, represented here by their Unique
Device Identifiers (UDID):

Number 11 – August 2012

 5

31b4f49bc9007f98b55df555b107cba841219a21,
73b94de27cb5841ff387078c175238d6abac44b2,
0b47179108f7ad5462ed386bc59520da8bfcea86,
320184fb96154522e6a7bd86dcd0c7a9805ce7c0,
11432945ee0b84c7b72e293cbe9acef48f900628,
5a3df0593f1b39b61e3c180f34b9682429f21b4f,
b5bfa7db6a0781827241901d6b67b9d4e5d5dce8

The file is hidden using Spring Board options, and on execution the sample writes out logind.app to
/System/Library/CoreServices. ‘logind’ exists on OSX but not normally on iOS.
It then installs: /System/Library/LaunchDaemons/com.apple.logind.plist

This creates persistence on reboot. It launches the logind process, then deletes install_manager.app.

On reboot it runs early in the boot process with ID 47:

Number 11 – August 2012

 6

This then drops SyncData.app. This application is signed, and the provisioning stipulates:

“Reliance on this certificate by any party assumes acceptance of the then applicable
standard terms and conditions of use, certificate policy and certification practice
statements.”

Further legal analysis would be necessary to determine whether the program violated the terms of use at the
time of its creation.

Number 11 – August 2012

 7

This application appears to provide functionality for call logging:

/Users/adm/Code/development/FinSpyV2/src/iOS/CoreTarget/CoreTarget
/MobileLoggingDataTLV.m
_OBJC_METACLASS_$_MobileLoggingDataTLV
_OBJC_CLASS_$_MobileLoggingDataTLV

Exfiltration of contacts:

/Users/adm/Code/development/FinSpyV2/src/iOS/CoreTarget/CoreTarget
/GIAddressBookModule.m
/Users/adm/Library/Developer/Xcode/DerivedData/CoreTarget-gqciilooqcckafgxlngvjezpbymr
/Build/Intermediates/CoreTarget.build/Release-iphoneos/SyncData.build/Objects-normal/armv7
/GIAddressBookModule.o
-[XXXVIII_cI getAddresses:]
/Users/adm/Code/development/FinSpyV2/src/iOS/CoreTarget/CoreTarget
/GIAddressBookModuleData.m

Target location enumeration:

@_OBJC_CLASS_$_CLLocationManager
/Users/adm/Code/development/FinSpyV2/src/iOS/CoreTarget/CoreTarget/GILocationManager.m
/Users/adm/Library/Developer/Xcode/DerivedData/CoreTarget-gqciilooqcckafgxlngvjezpbymr
/Build/Intermediates/CoreTarget.build/Release-iphoneos/SyncData.build/Objects-normal/armv7
/GILocationManager.o

As well as arbitrary data exfiltration, SMS interception and more.

SyncData.app exfiltrates base64 encoded data about the device (including the IMEI, IMSI etc) to a remote
cellular number.

Number 11 – August 2012

 8

The ‘logind’ process attempts to talk to a remote command and control server, the configuration information
for which appears to be stored in base64 encoded form in “SyncData.app/84C.dat”.

The _CodeSignature/CodeResources file suggests that install manager drops logind.app, SyncData.app and
Trampoline.app (Trampoline.app has not been examined).

org.logind.ctp.archive/logind.app/logind
org.logind.ctp.archive/SyncData.app/SyncData
org.logind.ctp.archive/trampoline.app/trampoline

Number 11 – August 2012

 9

Android

The Android samples identified come in the form of APKs.

2e96e343ac10f5d9ace680e456c083e4eceb108f7209aa1e849f11a239e7a682
0d798ca0b2d0ea9bad251125973d8800ad3043e51d4cc6d0d57b971a97d3af2d
72a522d0d3dcd0dc026b02ab9535e87a9f5664bc5587fd33bb4a48094bce0537

The application appears to install itself as “Android Services”:

Number 11 – August 2012

 10

It requests the following permissions:

android.permission.ACCESS_COARSE_LOCATION
android.permission.ACCESS_FINE_LOCATION
android.permission.INTERNET
android.permission.READ_PHONE_STATE
android.permission.ACCESS_NETWORK_STATE
android.permission.READ_CONTACTS
android.permission.READ_SMS
android.permission.SEND_SMS
android.permission.RECEIVE_SMS
android.permission.WRITE_SMS
android.permission.RECEIVE_MMS
android.permission.RECEIVE_BOOT_COMPLETED
android.permission.PROCESS_OUTGOING_CALLS
android.permission.ACCESS_NETWORK_STATE
android.permission.ACCESS_WIFI_STATE
android.permission.WAKE_LOCK
android.permission.CHANGE_WIFI_STATE
android.permission.MODIFY_PHONE_STATE
android.permission.BLUETOOTH
android.permission.RECEIVE_WAP_PUSH

The first 200 files in the apk are named “assets/Configurations/dummsX.dat”, where X is a number from 0-
199. The files are 0 bytes in length. The file header entries in the compressed file are normal, but the directory
header entries contain configuration information.
The code in the my.api.Extractor.getConfiguration() method opens up the APK file and searches for directory
entry headers (PK\x01\x02) then copies 6 bytes from the entry starting at offset 36. These are the “internal file
attributes” and “external file attributes” fields. The code grabs these sequences until it hits a 0 value.This
creates a base64 encoded string.

The app decodes this string and stores it in a file named 84c.dat (similar to the iOS sample discussed earlier).

Number 11 – August 2012

 11

Here’s the output from one of the samples:

KQIAAJBb/gAhAgAAoDOEAAwAAABQE/4AAAAAABAAAABgV/
4AAAAAAAAAAAAMAAAAQBX+AAAAAAAPAAAAcFj+AG1qbV9BTkQMAAAAQGGEACwB
AAANAAAAkGSEAIKHhoGDJgAAAHA3gABkZW1vLWRlLmdhbW1hLWludGVybmF0aW9uYWwu
ZGUbAAAAcDeAAGZmLWRlbW8uYmxvZ2Rucy5vcmcMAAAAQDiAAFAAAAAMAAAAQDiAAF
cEAAAMAAAAQDiAAFgEAAAVAAAAcGOEACs0OTE3MjY2NTM4MDAWAAAAcGqEACs0OTg5
NTQ5OTg5OTA4DwAAAHBmhABtam1fQU5EDAAAAEBlhACmNqEPDAAAAEAh
/gAoBAAADAAAAEANgAB7AAAADAAAAEBohAAAAAAADAAAAEA7gAAAAAAACgAAAJBghA
CtEAoAAACQYoQAwAAJAAAAsGeEAAAIAAAAkMZxAIwAAACQeYQAAAAAAAAAAAAAAAAA
AAA
AAAAAAAAAEBAQEAAQEAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPQAAAJA0RQA1AAAAoDNFAAwAA
ABAQUUA6AMAAAwAAABAQEUALAEAAAkAAAAwQkUAAAwAAACQZIQAh4aFgQ==

The Base64 decoded hexdump is:

Note that the hostnames demo-de.gamma-international.de and ff-demo.blogdns.org are suggestive of a demo
or pre-customization version of the FinSpy Mobile tool and are similar to domains identified in our previous
report.

http://demo-de.gamma-international.de/
http://ff-demo.blogdns.org/

Number 11 – August 2012

 12

We identified samples structurally similar to this sample that spoke to servers in the United Kingdom and the
Czech Republic:

Sample: 0d798ca0b2d0ea9bad251125973d8800ad3043e51d4cc6d0d57b971a97d3af2d
Command and Control: 212.56.102.38
Country: United Kingdom
Company: PlusNet Technologies

Sample: 2e96e343ac10f5d9ace680e456c083e4eceb108f7209aa1e849f11a239e7a682
Command and Control: 80.95.253.44
Country: Czech Republic
Company: T-Systems Czech Republic

Note that the Czech sample speaks to the same command and control server previously identified by Rapid7.

Symbian

Samples for Nokia’s Symbian platform were identified:

1e7e53b0d5fabcf12cd1bed4bd9ac561a3f4f6f8a8ddc5d1f3d2f3e2e9da0116
Symbian.sisx
eee80733f9664384d6bac4d4e27304748af9ee158d3c2987af5879ef83a59da0
mysym.sisx

The first sample (“Symbian.sisx”) identifies itself as “System Update” and appears to have been built on the
29th of May 2012, at 14:20:57 UTC.

https://community.rapid7.com/community/infosec/blog/2012/08/08/finfisher
https://en.wikipedia.org/wiki/Symbian

Number 11 – August 2012

 13

The certificate is registered to a jd@cyanengineeringservices.com. WHOIS information indicates that
www.cyanengineeringservices.com was anonymously registered (date of first registration: 07-Mar-07) with
GoDaddy using Domains By Proxy. Although it includes an attractive front page that states “Mobile Software
Development” for “Windows Mobile, iPhone, Android, Symbian and Blackberry,” all links (e.g. “Products”
“About Us” or “Contacts”) lead to an “under construction” blank page.

mailto:jd@cyanengineeringservices.com
http://www.cyanengineeringservices.com/

Number 11 – August 2012

 14

The sample contains the following components:

The file “c:\sys\bin\updater.exe” provides the main implant functionality. This requests the following
capabilities1:

PowerMgmt
ReadDeviceData
TrustedUI
SwEvent
NetworkServices
ReadUserData
WriteUserData
Location

Number 11 – August 2012

 15

Of special note is the use of TrustedUI. As mentioned in the security section of the Nokia developer notes for
Symbian:

“Trusted UI dialogs are rare. They must be used only when confidentiality and security are
critical: for instance for password dialogs. Normal access to the user interface and the
screen does not require this.”

The second sample (“mysym.sisx”) identifies itself as “Installation File” and appears to be signed by the
“Symbian CA I” for “Cyan Engineering Services SAL (offshore),” unlike the previous sample, which was
registered to jd@cyanengineeringservices.com.

We identified “Cyan Engineering Services SAL (offshore)” as also listed as the registrant on the parked
domain www.it-intrusion.com, (Created: 08-Dec-11, also with GoDaddy). However, it-intrusion.com does
not have a protected registrant. The registrant is listed2 as a company based in Beirut, Lebanon:

Cyan Engineering Services SAL (offshore)
Broadway Center, 7th Floor
Hamra Street – Chouran 1102-2050
Beirut, Beirut 00000
Lebanon
Domain Domain Name: IT-INTRUSION.COM
Created: 08-Dec-11
Expires: 08-Dec-13
Updated: 08-Dec-11
Administrative Contact: Debs, Johnny

mailto:jd@cyanengineeringservices.com

Number 11 – August 2012

 16

The registrant information for Cyan Engineering Services SAL also connects to Gamma: the name “Johnny
Debs” is associated with Gamma International: a Johnny Debs was listed as representing Gamma at the
October 2011 Milpol in Paris, and the name occurs elsewhere in discussions of FinFisher.

Examination of this sample reveals the domain demo-01.gamma-international.de potentially indicating a demo
or pre-customization copy.

The phone number +60123839897 also shows up in the sample. It has a Malaysian country code.

Blackberry

The identified samples contained the following files:

rlc_channel_mode_updater.cod
rlc_channel_mode_updater-1.cod
rlc_channel_mode_updater.jad

The .cod files are signed by RIM’s RBB, RCR, and RRT keys. RBB stands for “RIM BlackBerry Apps API,”
which allows manipulation of BlackBerry apps, RCR stands for “RIM Crypto API,” which allows access to
crypto libraries, and RRT stands for “RIM Runtime API,” which allows access to other phone functionality
such as sending SMS messages.
The signature process is described in RIM’s documentation [pdf] about the Blackberry Signing Authority.
First, a developer registers a public key with the Blackberry Signing Authority. In order to obtain a signed
application, the developer submits a signature request (including his identity and a hash of the binary) signed
with his private key to the Signing Authority. The Signing Authority verifies that the signer is authorized to

http://milipol.b2b-match.com/index.php?page=cat_par¶ms%5Bid%5D=157
http://www.thetechherald.com/articles/Report-U-K-firm-offered-IT-intrusion-tools-to-Egyptian-government
http://demo-01.gamma-international.de/
http://docs.blackberry.com/en/developers/deliverables/1077/BlackBerry_Signing_Authority_Tool_1.0_-_Password_Based_-_Administrator_Guide.pdf

Number 11 – August 2012

 17

make requests, and, if so, replies with a copy of the hash signed with the relevant RIM private key. The
developer then appends the signature to his binary.

The .jad file contains the following hashes for the .cod files:

RIM-COD-SHA1-1: 2d 0a a2 b3 54 97 f7 35 fb 40 77 8e e1 ca 7f 8f 3e a0 aa 04
RIM-COD-SHA1: 0f 3b d8 d1 84 da 35 4e 10 94 89 c0 d6 08 70 ad 5e 7a f3 e0

The .jad file also contains a blob of base64 encoded data with the key “RIM-COD-Config.” This data contains
the URL of the command & control server, TCP ports, phone numbers to exfiltrate data to via SMS, identifiers
for the Trojan and target, active modules, and various other configuration parameters.

Decoding this reveals the following servers and phone numbers:

118.97.89.186 – Indonesia
+6281310781704 – Indonesia
+49456456456 – Germany

Number 11 – August 2012

 18

Upon installation, the user is presented with the following screen:

As evidenced by the above screenshot, the app is listed as:

TellCOM Systems LTD
Common Communication Update DSCH/USCH V32

Directly after installing, the application requests enhanced permissions:

Number 11 – August 2012

 19

The following screen pops up showing the requested permissions:

Scrolling down reveals:

After the user accepts these permissions, the sample attempts to connect to both Internet-based and SMS-
based command & control servers. Another sample we analyzed appeared to write a debug log to the device’s
filesystem. The following information was observed written to the log regarding communication with
command & control services.

Number 11 – August 2012

 20

net.rmi.device.api.fsmbb.phone.PhoneInterface – connecting to http://demo-01.gamma-
international.de:1111/ping/XXXXXXXXXXXX;deviceside=true failed:
net.rim.device.cldc.io.dns.DNSException: DNS error DNS error

net.rmi.device.api.fsmbb.core.com.protocol.HeartbeatProtocolSMS – Heartbeat type 11
(1346097705922)+ core hb content: XXXXX/123456783648138/666666553648138/12e/666/0/0///

net.rmi.device.api.fsmbb.core.com.SMSCommunication – 1346097743 Success: texting to:
//+XXXXXXXXXX msg: XXXXX

net.rmi.device.api.fsmbb.core.com.protocol.HeartbeatProtocolSMS – Heartbeat type 11
(1346097705922)+ extended hb content: XXXXX/123456783648138/XXXXX/999/420/B9700 5.0.

net.rmi.device.api.fsmbb.core.com.SMSCommunication – 1346097743 Success: texting to:
//+XXXXXXXXXX msg: XXXXX

We decompiled the Blackberry sample. We provide a high-level overview of the more interesting classes that
we successfully decompiled:

net.rmi.device.api.fsmbb.config.ApnDatabase
net.rmi.device.api.fsmbb.config.ApnDatabase$APN

These appeared to contain a database comprising the following GSM APNs. The significance of this database
is that it only includes a small set of countries and providers:

Germany: web.vodafone.de, internet.t-mobile
Indonesia: indosatgprs, AXIS, telkomsel, www.xlgprs.net, 3gprs
Brazil: claro.com.br, wapgprs.oi.com.br, tim.br
Mexico: wap.telcel.com

Number 11 – August 2012

 21

net.rmi.device.api.fsmbb.core.AppMain

This appears to do the main app installation, as well as uninstallation. Installation includes negotiating for
enhanced permissions, base64-decoding the “RIM-COD-Config” configuration, and setting up and installing
the Configuration. If the configuration contains a “removal date,” then automatic removal is scheduled for this
time. Installation also involves instantiating “listener” modules, as specified below:

net.rmi.device.api.fsmbb.core.listener.AddressBookObserver

This appears to listen for changes to the address book. It implements the
net.rim.blackberry.api.pim.PIMListListener interface.

net.rmi.device.api.fsmbb.core.listener.CallObserver.*

This implements:

net.rim.blackberry.api.phone.PhoneListener
net.rim.blackberry.api.phone.phonelogs.PhoneLogListener
net.rim.device.api.system.KeyListener

This module logs and manipulates phone events, and appears to enable “remote listening” functionality, where
the FinSpy Master can silently call an infected phone to listen to conversation in its vicinity (this is referred to
as a SpyCall in the code). The module has a facility to hide incoming calls by manipulating the UI, cancelling
buzzer and vibration alerts, and toggling the backlight. Upon instantiation, the module calls “*43#” to enable
call waiting. If a remote listening call from the master is active, then legitimate incoming calls will trigger call
waiting. The module detects these legitimate incoming calls, and places the SpyCall call on call waiting,
presenting the legitimate incoming call to the user.

net.rmi.device.api.fsmbb.core.listener.EmailObserver

This appears to record sent and received email messages.

net.rmi.device.api.fsmbb.core.listener.MessengerObserver (Module #68)

 This seems to record BBM messages. It appears to do this by periodically checking the path
“file:///store/home/user/im/BlackBerry Messenger/”

net.rmi.device.api.fsmbb.core.listener.SMSObserver

Number 11 – August 2012

 22

 This module implements:

net.rim.blackberry.api.sms.SendListener
net.rim.blackberry.api.sms.OutboundMessageListener

Contrary to its name, OutboundMessageListener allows listening for both incoming and outgoing SMS
messages. This module also checks for incoming SMS commands from the FinSpy Master. These commands
can include an “emergency configuration” update, that can include new addresses and phone numbers for the
FinSpy Master.

net.rmi.device.api.fsmbb.core.listener.WAObserver (Module #82)

This appears to monitor WhatsApp, the popular proprietary cross-platform messaging application. It locates
the WhatsApp process ID by searching for module names that contain the string “WhatsApp.”

At some point, the module calls getForegroundProcessId to see if the WhatsApp process ID is in the
foreground. If so, it seems to take a screenshot of the WhatsApp application, via Display.Screenshot. It
appears that this screenshot is checked via “.equals” to see if there is any new information on the WhatsApp
screen. If there is new information, the screenshot is then JPEG encoded via JPEGEncodedImage.encode.

net.rmi.device.api.fsmbb.core.com.*

Appears to contain the mechanics of communication with the command & control server, including the
plaintext TLV-based wire protocol.

Windows Mobile

The Windows Mobile samples we identified are:

2ccbfed8f05e6b50bc739c86ce4789030c6bc9e09c88b7c9d41cbcbde52a2455
507e6397e1f500497541b6958c483f8e8b88190407b307e997a4decd5eb0cd3a
1ff1867c1a55cf6247f1fb7f83277172c443442d174f0610a2dc062c3a873778

All the samples appeared similar, most likely belonging to the same branch release. The relevant parts of the
binary are stored in five different resources:

• The first resource contains an OMA Client Provisioning XML file, which is used to store root
certificates for running privileged/unprivileged code on the device. In this case it only contained some
default example values shipped with Microsoft Windows Mobile SDK.

Number 11 – August 2012

 23

• The second resource contains the actual dropped payload which contains all the Trojan functionalities.

• The third resource contains a binary configuration file.

• The fourth and fifth resources contain two additional DLL files which are dropped along with the
payload.

The main implant is dropped as “services.exe” with the libraries dropped as mapiwinarm.dll and
mswservice.dll.

The payload has the following attributes:

File size: 186640 bytes
SHA256:
4b99053bc7965262e8238de125397d95eb7aac5137696c7044c2f07b175b5e7c

This is a multi-threaded and modular engine which is able to run and coordinate a series of events providing
interception and monitoring capabilities. When the application starts, a core initialization function is invoked,
responsible for preparing execution and launching the main thread.

The main thread consequently runs a set of core components on multiple threads:

• Routines responsible for handling the “heartbeat” notifications.

• Routines which control the execution of the Trojan and its components while monitoring the status of
the device.

• A routine which can be used to “wake up” the device.

• A component which handles emergency SMS communications.

• A routine that initializes the use of the Radio Interface Layer.

• A core component that manages a set of surveillance modules.

The Trojan utilises a “Heartbeat Manager”, which is a set of functions and routines that, depending on the
status of the device or monitored events, communicates notifications back to the command and control server.

These beacons are sent according the following events:

• First beacon.

• A specified time interval elapsing.

• The device has low memory.

• The device has low battery.

Number 11 – August 2012

 24

• The device changed physical location.

• The Trojan has recorded data available.

• The device has connected to a cellular network.

• The device has a data link available.

• The device connects to a WiFi network.

• An incoming / outgoing call starts.

• The Mobile Country Code (MCC) or Mobile Network Code (MNC) ID changed.

• The Trojan is being uninstalled.

• The SIM changes.

Notifications are sent via SMS, 3G and WiFi, according to availability. Consistent with other platforms, the
windows mobile version appears to use base64 encoding for all communications.

In response to such notifications, the implant is able to receive and process commands such as:

STOP_TRACKING_CMD
START_TRACKING_CMD
RESEND_FIRST_HEARTBEAT_TCPIP_CMD
RESEND_FIRST_HEARTBEAT_SMS_CMD
REMOVE_LICENSE_INFO_CMD
KEEP_CONNECTION_ALIVE_CMD IGNORED b/c it’s an SMS answer
KEEP_CONNECTION_ALIVE_CMD
REMOVE_AT_AGENT_REQUEST_CMD
REMOVE_AT_MASTER_REQUEST_CMD
REMOVE_MAX_INFECTION_REACHED_CMD

The command and control server is defined in the configuration file found in the third resource of the dropper.
In this sample, the sample connected to the domain: demo-04.gamma-international.de
This suggests that such sample is either a demo version or “unpackaged” version ready to be customized.

Together with a DNS or IP command and control server, each sample appears to be provided with two phone
numbers which are used for SMS notifications.

The core surveillance and offensive capabilities of the Trojan are implemented through the use of several
different modules. These modules are initialized by a routine we called ModulesManager, which loads and
launches them in separate threads:

Number 11 – August 2012

 25

There are multiple modules available, including:

• AddressBook: Providing exfiltration of details from contacts stored in the local address book.

• CallInterception: Used to intercept voice calls, record them and store them for later transmission.

• PhoneCallLog: Exfiltrates information on all performed, received and missed calls stored in a local log
file.

• SMS: Records all incoming and outgoing SMS messages and stores them for later transmission.

• Tracking: Tracks the GPS locations of the device.

Call Interception

In order to manipulate phone calls, the Trojan makes use of the functions provided by RIL.dll, the Radio
Interface Layer.

Some of the functions imported and used can be observed below:

Number 11 – August 2012

 26

PhoneCallLog

In order to exfiltrate call logs, the Trojan uses functions provided by the Windows Mobile Phone Library.

Using PhoneOpenCallLog() and PhoneGetCallLogEntry(), the implant is able to retrieve the following
struct for each call being registered by the system:

typedef struct {
DWORD cbSize;
FILETIME ftStartTime;
FILETIME ftEndTime;
IOM iom;
BOOL fOutgoing:1;
BOOL fConnected:1;
BOOL fEnded:1;
BOOL fRoam:1;
CALLERIDTYPE cidt;
PTSTR pszNumber;
PTSTR pszName;
PTSTR pszNameType;
PTSTR pszNote;
DWORD dwLogFlags;
CEIOD iodContact;
CEPROPID pidProp;
} CALLLOGENTRY, * PCALLLOGENTRY;

Number 11 – August 2012

 27

This contains timestamps, numbers, names and other data associated with a call.

Tracking

The physical tracking of the device uses the GPS Intermediate Driver functions available on the Windows
Mobile/CE platform:

Number 11 – August 2012

 28

After a successful GPSOpenDevice() call, it invokes GPSGetPosition() which gives access to a
GPS_POSITION struct containing the following information:

typedef struct _GPS_POSITION {
DWORD dwVersion;
DWORD dwSize;
DWORD dwValidFields;
DWORD dwFlags;
SYSTEMTIME stUTCTime;
double dblLatitude;
double dblLongitude;
float flSpeed;
float flHeading;
double dblMagneticVariation;
float flAltitudeWRTSeaLevel;
float flAltitudeWRTEllipsoid;
GPS_FIX_QUALITY FixQuality;
GPS_FIX_TYPE FixType;
GPS_FIX_SELECTION SelectionType;
float flPositionDilutionOfPrecision;
float flHorizontalDilutionOfPrecision;
float flVerticalDilutionOfPrecision;
DWORD dwSatelliteCount;
DWORD rgdwSatellitesUsedPRNs[GPS_MAX_SATELLITES];
DWORD dwSatellitesInView;
DWORD rgdwSatellitesInViewPRNs[GPS_MAX_SATELLITES];
DWORD rgdwSatellitesInViewElevation[GPS_MAX_SATELLITES];
DWORD rgdwSatellitesInViewAzimuth[GPS_MAX_SATELLITES];
DWORD rgdwSatellitesInViewSignalToNoiseRatio[GPS_MAX_SATELLITES];
} GPS_POSITION, *PGPS_POSITION;

This provides the latitude and longitude of the current location of the device.

COMMAND AND CONTROL SERVER SCANNING RESULTS

Following up on our earlier analysis, we scanned IP addresses in several countries looking for FinSpy
command & control servers. At a high level, our scans probed IP addresses in each country, and attempted to
perform the handshake distinctive to the FinSpy command and control protocol. If a server responded to the
handshake, we marked it as a FinSpy node. We expect to release our scanning tools with a more complete
description of methodology in a follow-up blog post.

Number 11 – August 2012

 29

Our scanning yielded two key findings. First, we have identified several more countries where FinSpy
Command and Control servers were operating. Scanning has thus far revealed two servers in Brunei, one in
Turkmenistan’s Ministry of Communications, two in Singapore, one in the Netherlands, a new server in
Indonesia, and a new server in Bahrain.

Second, we have been able to partially replicate the conclusions of an analysis by Rapid7, which reported
finding FinSpy command & control servers in ten countries: Indonesia, Australia, Qatar, Ethiopia, Czech
Republic, Estonia, USA, Mongolia, Latvia, and the UAE. We were able to confirm the presence of FinSpy on
all of the servers reported by Rapid7 that were still available to be scanned. We confirmed FinSpy servers in
Indonesia, Ethiopia, USA, Mongolia, and the UAE. The remaining servers were down at scanning time. We
also noted that the server in the USA appeared to be an IP-layer proxy (e.g., in the style of Network Address
Translation)3.

Rapid7’s work exploited a temporary anomaly in FinSpy command & control servers. Researchers at Rapid7
noticed that the command & control server in Bahrain responded to HTTP requests with the string “Hallo
Steffi.” This behavior did not seem to be active on Bahrain’s server prior to the release of our analysis. Rapid7
looked at historical scanning information, and noticed that servers in ten other countries had responded to
HTTP requests with “Hallo Steffi” at various times over the previous month. While the meaning of this string
and the reason for the temporary anomaly are unknown, a possible explanation is that this was a testing
deployment of a server update, and the “Hallo Steffi” message indicated successful receipt of the update. After
the publication of Rapid7’s analysis, the behavior began to disappear from FinSpy servers.

DETAILS OF OBSERVED SERVERS

Table 1: New Servers
Country IP Ports Owner
Singapore

203.175.168.2 21, 53, 443, 4111 HostSG

Singapore 203.211.137.105 21, 53, 80, 443, 4111 Simple Solution System Pte
Ltd

Bahrain

89.148.15.15 22, 53, 80, 443, 4111 Batelco

Turkmenistan

217.174.229.82 22, 53, 80, 443, 4111, 9111 Ministry of Communications

Brunei

119.160.172.187 21 Telekom Brunei

Brunei

119.160.128.219 4111, 9111 Telekom Brunei

Indonesia

112.78.143.34 22, 53, 80, 443, 9111 Biznet ISP

Netherlands

164.138.28.2 80, 1111 Tilaa VPS Hosting

https://community.rapid7.com/community/infosec/blog/2012/08/08/finfisher
https://citizenlab.org/2012/08/the-smartphone-who-loved-me-finfisher-goes-mobile/#3

Number 11 – August 2012

 30

Table 2: Confirmed Rapid7 Servers

Country IP Ports Owner

USA 54.248.2.220 80 Amazon EC2

Indonesia 112.78.143.26 22, 25, 53, 80, 443, 4111 Biznet ISP

Ethiopia 213.55.99.74 22, 53, 80, 443, 4111, 9111 Ethio Telecom

Mongolia 202.179.31.227 53, 80, 443 Mongolia Telecom

UAE 86.97.255.50 21, 22, 53, 443, 4111 Emirates Telecommunications
Corporation

It is interesting to note that the USA server on EC2 appeared to be an IP-layer proxy. This judgment was made
on the basis of response time comparisons4.

CONCLUSIONS AND RECOMMENDATONS

The analysis we have provided here is a continuation of our efforts to analyze what appear to be parts of the
FinFisher product portfolio. We found evidence of the functionality that was specified in the FinFisher
promotional materials. The tools and company names (e.g. Cyan Engineering Services SAL) found in their
certificates also suggest interesting avenues for future research.

These tools provide substantial surveillance functionality; however, we’d like to highlight that, without
exploitation of the underlying platforms, all of the samples we’ve described require some form of interaction
to install. As with the previously analyzed FinSpy tool this might involve some form of socially engineered e-
mail or other delivery, prompting unsuspecting users to execute the program. Or, it might involve covert or
coercive physical installation of the tool, or use of a user’s credentials to perform a third-party installation.

We recommend that all users run Anti-Virus software, promptly apply (legitimate) updates when they become
available, use screen locks, passwords and device encryption (when available). Do not run untrusted
applications and do not allow third parties access to mobile devices.

As part of our ongoing research, we have notified vendors, as well as members of the AV community.

Number 11 – August 2012

 31

ACKNOWLEDGEMENTS

This is a Morgan Marquis-Boire and Bill Marczak production.
Windows mobile sample analysis by Claudio Guarnieri.

Additional Analysis
Thanks to Pepi Zadowsky for OSX expertise and assistance.
Thanks to Jon Larimer and Sebastian Porst for Android expertise.

Additional Thanks
Special thanks to John Scott-Railton.
Additional thanks to Marcia Hofmann and the Electronic Frontier Foundation.
Tip of the hat to John Adams for scanning advice.

ABOUT MORGAN MARQUIS-BOIRE

Morgan Marquis-Boire is a Technical Advisor at the Citizen Lab, Munk School of Global Affairs, University
of Toronto. He works as a Security Engineer at Google specializing in Incident Response, Forensics and
Malware Analysis.

ABOUT BILL MARCZAK

Bill Marczak is a computer science Ph.D student at UC Berkeley. He is a founding member of Bahrain Watch,
a monitoring and advocacy group that seeks to promote effective, accountable, and transparent governance in
Bahrain through research and evidence-based activism.

ABOUT CLAUDIO GUARNIERI

Claudio Guarnieri is a Security Researcher at Rapid7. He's daily involved with general Internet badness and
his specialties span from malware analysis to botnets tracking and cybercrime intelligence. He's a core
member of The Honeynet Project and The Shadowserver Foundation, two no-profit organizations devoted to
making Internet a safer place.

http://www.cs.berkeley.edu/~wrm/
https://twitter.com/botherder
http://johnscottrailton.com/
https://www.eff.org/
https://twitter.com/netik
http://bahrainwatch.org/

Number 11 – August 2012

 32

FOOTNOTES
1 A list of Nokia capabilities can be found here.
2 http://www.whoisentry.com/domain/it-intrusion.com
3 See Appendix A.
4 See Appendix A.

APPENDIX A

The server was serving FinSpy on port 80, and SSH on port 22. We measured the SYN/ACK RTT on both
ports and compared. The results for port 80:

hping -S -p 80 54.248.2.220
HPING 54.248.2.220 (wlan0 54.248.2.220): S set, 40 headers + 0 data bytes
len=44 ip=54.248.2.220 ttl=24 DF id=0 sport=80 flags=SA seq=0 win=5840 rtt=1510.2 ms
len=44 ip=54.248.2.220 ttl=23 DF id=0 sport=80 flags=SA seq=1 win=5840 rtt=740.4 ms
len=44 ip=54.248.2.220 ttl=25 DF id=0 sport=80 flags=SA seq=2 win=5840 rtt=753.4 ms
len=44 ip=54.248.2.220 ttl=24 DF id=0 sport=80 flags=SA seq=3 win=5840 rtt=1001.6 ms

The results for port 22:

hping -S -p 22 54.248.2.220
HPING 54.248.2.220 (wlan0 54.248.2.220): S set, 40 headers + 0 data bytes
len=44 ip=54.248.2.220 ttl=49 DF id=0 sport=22 flags=SA seq=0 win=5840 rtt=125.7 ms
len=44 ip=54.248.2.220 ttl=49 DF id=0 sport=22 flags=SA seq=1 win=5840 rtt=124.3 ms
len=44 ip=54.248.2.220 ttl=49 DF id=0 sport=22 flags=SA seq=2 win=5840 rtt=123.3 ms
len=44 ip=54.248.2.220 ttl=50 DF id=0 sport=22 flags=SA seq=3 win=5840 rtt=127.2 ms

The comparison reveals that port 80 TCP traffic was likely being proxied to a different computer.

https://www.developer.nokia.com/Community/Wiki/Capabilities
http://www.whoisentry.com/domain/it-intrusion.com

